## Dual-parameter Correlation Analysis of the Fluorescence Data of 1-Methyl-2-formyl-5-substituted Pyrrole (4-nitrophenyl)hydrazones

## Roderick Hai Ying HE, Xi Kui JIANG\*

Shanghai Institute of Organic Chemistry, 354 Feng-Lin Lu, Shanghai 200032

Abstract: By using 1-methyl-2-formyl-5-Y-substituted pyrrole (4-nitrophenyl)hydrazones as a model for nitrogen-containing heterocyclic aromatic compounds, the emission wavelength  $[\lambda_{max(em)}]$  values of their fluorescence spectra have been measured. Correlation results show that the  $\Delta E_{em}$  values are mainly affected by polar effects, but spin-delocalizatin effects also exist.

**Keywords:** Fluorescence spectra, correlation analysis, dual-parameter equation, spin-delocalization effect, polar effect, 1-methyl-2-formyl-5-Y-substituted pyrrole (4-nitrophenyl)hydrazones.

On the basis of the magnitudes of evaluated  $|\rho_{mb}/\rho_{JJ}|^{\bullet}|$  values of Eq.1, in which  $\rho^x \sigma^x$  (or  $\rho_{mb}/\sigma_{mb}$ ) and  $\rho^{\bullet} \sigma^{\bullet}$  (or  $\rho_{JJ}^{\bullet}/\sigma_{JJ}^{\bullet}$ ) represent the polar and spin-delocalization effect, we have recently proposed that there are four categories of possible circumstances for correlation analysis of radical reactivities and spectral properties<sup>1</sup>. I Both polar and spin-delocalization effects are important, and  $|\rho_{mb}/\rho_{JJ}^{\bullet}|$  falls in-between 0.2 and 0.8. II Polar effects predominate,  $|\rho_{mb}/\rho_{JJ}^{\bullet}| > 1.0$ . III The spin-delocalization effect predominates,  $|\rho_{mb}/\rho_{JJ}^{\bullet}| < 0.2$ . IV No correlation can be achieved.

| variable = $\rho^x \sigma^x + \rho^\bullet \sigma^\bullet + C$ | (1) |
|----------------------------------------------------------------|-----|
| variable = $\rho^x \sigma^x + C$                               | (2) |
| variable = $\rho^{\bullet} \sigma^{\bullet} + C$               | (3) |

Correlation results for the fluorescence spectral data of substituted styrenes and  $\alpha$ -methylstyrenes have been found to fall in category-**I** in harmony with the diradicaloid character of the singlet excited states<sup>2, 3</sup>. We have also found that the behavior of the fluorescence spectral data of ethylene acetals and 4-nitrophenyl hydrazones can be classified as category-**III** and category-**II**, respectively<sup>4</sup>. However, there is no report on the correlation analysis of fluorescence spectral data of heterocyclic aromatic compounds, *e.g.*, pyrroles. Will the correlation results for the fluorescence spectral data of pyrroles conform to category-**II** or category-**III** behavior? The purpose of this paper is to answer this question. The compounds chosen for our analysis are

1-methyl-2-formyl-5-Y-substituted pyrroles **1-Y**, 1-methyl-2-formyl-5-Y-substituted pyrrole phenylhydrazones **2-Y** and 1-methyl-2-formyl-5-Y-substituted pyrrole (4-nitrophenyl)hydrazones **3-Y**<sup>5</sup>, but only **3-Y** possess fluorescence spectra (*cf* **Table 1**).



Y = H, CH<sub>3</sub>, Cl, CN, COCH<sub>3</sub>, NO<sub>2</sub>, COOH, SCH<sub>3</sub>, COOCH<sub>3</sub>, Si(CH<sub>3</sub>)<sub>3</sub>, Br and OCH<sub>3</sub>

Single-parameter correlation results for **3-Y** summarized in **Table 2** show that correlations with confidence level (CL) greater than 99.9% can be achieved by eqn. (2), *e.g.*, for  $\sigma_p$ : r = 0.974,  $\Psi = 0.246$ , F = 188, n = 12. However, single-parameter correlation analysis with all the  $\sigma^{\bullet}$  contants yield meaningless results (r < 0.62). By using the dual-parameter eqn. (1), all the six pairings of ( $\sigma^x + \sigma^{\bullet}$ ) yield good correlations with CL > 99.9%, *e.g.*, for ( $\sigma_p$ ,  $\sigma_{JJ}^{\bullet}$ ): R = 0.974,  $\psi = 0.259$ , F = 84.6, n = 12; for ( $\sigma_{mb}$ ,  $\sigma_{JJ}^{\bullet}$ ): R = 0.943,  $\Psi = 0.383$ , F = 36.3, n = 12.

**Table 1.**  $\lambda_{ex}$  (nm),  $\lambda_{max(em)}$  (nm) and their energies for the fluorescene spectra of **3-Y**<sup>a</sup>

| Y                                 | $\lambda_{ex}(nm)$ | $\Delta E_{ex} (eV)^{b}$ | $\lambda_{\max(em)}$ | $\Delta E_{em}(eV)^{b}$ | D <sub><b>mb</b></sub> -1 <sup>c</sup> | $D_{\boldsymbol{m}\boldsymbol{J}}$ -2 $^d$ |
|-----------------------------------|--------------------|--------------------------|----------------------|-------------------------|----------------------------------------|--------------------------------------------|
| Н                                 | 392.04             | 3.165                    | 530.31               | 2.340                   | -0.017                                 | -0.005                                     |
| CH <sub>3</sub>                   | 396.97             | 3.126                    | 542.94               | 2.285                   | -0.022                                 | -0.017                                     |
| Cl                                | 394.06             | 3.149                    | 522.67               | 2.374                   | -0.002                                 | 0.002                                      |
| CN                                | 378.64             | 3.277                    | 495.21               | 2.506                   |                                        | -0.010                                     |
|                                   |                    |                          |                      |                         | 0.041                                  |                                            |
| COCH <sub>3</sub>                 | 391.52             | 3.169                    | 498.48               | 2.489                   | 0.035                                  | 0.028                                      |
| $NO_2$                            | 403.32             | 3.076                    | 499.11               | 2.486                   | -0.049                                 | -0.017                                     |
| COOH                              | 392.23             | 3.163                    | 507.08               | 2.447                   | 0.037                                  | 0.034                                      |
| SCH <sub>3</sub>                  | 392.13             | 3.164                    | 537.25               | 2.310                   | -0.046                                 | -0.021                                     |
| COOCH <sub>3</sub>                | 383.27             | 3.237                    | 503.19               | 2.466                   | 0.056                                  | 0.027                                      |
| Si(CH <sub>3</sub> ) <sub>3</sub> | 394.89             | 3.142                    | 534.63               | 2.321                   | -0.060                                 | -0.060                                     |
| Br                                | 390.11             | 3.181                    | 521.61               | 2.379                   | -0.003                                 | 0.003                                      |
| OCH <sub>3</sub>                  | 397.00             | 3.125                    | 548.88               | 2.261                   | 0.037                                  | 0.035                                      |
|                                   |                    |                          |                      | $\Sigma D$              | 0.41                                   | 0.26                                       |

a. Solvent: EtOH

b.  $\Delta E (eV) = 1240.8 / \lambda (nm)$ 

c. Individual and total deviations of the experimental data from the regression line ( $\Delta E_{em} \sim \sigma_{mb}$ ).

d. Individual and total deviations of the experimental data from the regression line  $[\Delta E_{em} \sim (\sigma_{mb}, \sigma_{JJ})]$ .

Although application of the dual-parameter eqn. (1) seems to improve the correlation results, this improvement cannot be considered meaningful unless we look into our data more closely<sup>1</sup>. It would be good practice to examine the individual deviations (D<sub>mb</sub>-1, D<sub>mJ</sub>-2) as well as the sum of the deviations  $\Sigma |D|$  (*cf* footnotes of **Table 1**). Notably, the D<sub>mb</sub>-1 of CN, SCH<sub>3</sub> and COOCH<sub>3</sub> is 0.041, -0.046 and 0.056 respectively, but the D<sub>mJ</sub>-2 of CN, SCH<sub>3</sub> and COOCH<sub>3</sub> is -0.01, -0.021 and 0.027 respectively. Furthemore, the  $\Sigma |D_mJ-2|$  value (0.26) is much smaller than the  $\Sigma |D_mb-1|$  value (0.41). Therefore, we believe that the above-mentioned improvement by application of the dual-parameter equation is genuine and that the spin-delocalization effect is in operation even though it is overshadowed by the polar effect. Judging by the  $|\rho_{mb}/\rho_{JJ}^{\bullet}|$  value of 3.95 and by the aforesaid examination of the deviations, the behavior of fluorescence spectral data of **3-Y** can be classified as category-**II**, i.e., fluorescence spectra of **3-Y** are mainly affected by the polar effects of the substituents, but spin-delocalization effects also exist.

Table 2 Correlation results for the fluorescence spectral data of 3-Y in EtOH

| $\sigma^{x}$ or $\sigma^{\bullet}$<br>or<br>$(\sigma^{x} + \sigma^{\bullet})$ | ρ <sup>x</sup> | ρ        | r or R | S       | ψ      | F <sup>a</sup> | n <sup>b</sup> |
|-------------------------------------------------------------------------------|----------------|----------|--------|---------|--------|----------------|----------------|
| σ <sub>p</sub>                                                                | 0.2501         |          | 0.9744 | 0.02050 | 0.2462 | 187.9          | 12             |
| $\sigma^+$                                                                    | 0.1604         |          | 0.9425 | 0.02995 | 0.3696 | 71.51          | 11             |
| $\sigma_{mb}$                                                                 | 0.1725         |          | 0.9402 | 0.03107 | 0.3732 | 76.17          | 12             |
| $\sigma_p + \sigma_{JJ}^{\bullet}$                                            | 0.2493         | 0.00358  | 0.9744 | 0.02160 | 0.2594 | 84.64          | 12             |
| $\sigma^+ + \sigma_{JJ}^{\bullet}$                                            | 0.1570         | 0.1197   | 0.9689 | 0.02352 | 0.2904 | 61.22          | 11             |
| $\sigma_{mb} + \sigma_{JJ}^{\bullet}$                                         | 0.1671         | 0.04227  | 0.9433 | 0.03192 | 0.3834 | 36.32          | 12             |
| $\sigma_p + \sigma_c \bullet$                                                 | 0.2542         | -0.04150 | 0.9811 | 0.01896 | 0.2312 | 90.00          | 10             |
| $\sigma^+ + \sigma_c^{\bullet}$                                               | 0.1401         | 0.1247   | 0.9708 | 0.02349 | 0.2866 | 57.39          | 10             |
| $\sigma_{mb} + \sigma_c^{\bullet}$                                            | 0.1532         | 0.04852  | 0.9556 | 0.02887 | 0.3521 | 36.82          | 10             |

a. Critical F values:  $F_{0.001}(1, 10) = 21.04$ ;  $F_{0.001}(1, 9) = 22.86$ ;  $F_{0.001}(2, 9) = 16.39$ ,  $F_{0.001}(2, 8) = 18.49$ ;  $F_{0.001}(2, 7) = 21.69$ .

b. n = 12, Y = H, CH<sub>3</sub>, Cl, CN, COCH<sub>3</sub>, NO<sub>2</sub>, COOH, SCH<sub>3</sub>, COOCH<sub>3</sub>, Si(CH<sub>3</sub>)<sub>3</sub>, Br, OCH<sub>3</sub>; n = 11, all of 12 substituted groups except for COCH<sub>3</sub>;

n = 10, all of 12 substituted groups except for COCH<sub>3</sub> and COOH.

## Acknowledgments

We thank the National Natural Science Foundation of China and the China Postdoctoral Science Foundation for financial support.

Roderick Hai Ying HE et al.

## References

- 1. X. K. Jiang, Acc. Chem. Res., 1997, 30, 283.
- Y. H. Zhang, G. H. X. Guo, X. S. Jin, B. B. Jiang, Y. H. Fu, X. K. Jiang, J. Photochem. Photobiol. A: Chem., 1995, 88, 11.
- 3. H. Zhang, B. Jiang, X. K. Jiang, Chin. J. Chem., 1997, 15, 395.
- 4. W. F. X. Ding, X. K. Jiang, Chin. Chem. Lett., 1998, 9, 385
- 5. H. Y. He, X. K. Jiang, Chin. J. Chem., 1998, accepted.

Received 28 December 1998